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Abstract

This paper presents an implementation of the approximate statistical moment method for uncertainty propagation

and robust optimization for a quasi I-D Euler CFD code. Given uncertainties in statistically independent, random,

normally distributed input variables, a first- and second-order statistical moment matching procedure is performed to

approximate the uncertainly in the CFD output. Efficient calculation of both first- and second-order sensitivity

derivatives is required. In order to assess the validity of the approximations, the moments are compared with

statistical moments generated through Monte Carlo simulations. The uncertainties in the CFD input variables are

also incorporated into a robust optimization procedure. For this optimization, statistical moments involving first-

order sensitivity derivatives appear in the objective function and system constraints. Second-order sensitivity

derivatives are used in a gradient-based search to successfully execute a robust optimization. The approximate

methods used throughout the analyses are found to be valid when considering robustness about input parameter
mean values.
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Nomenclature

nozzle area Minf

geometric shape parameter Mt

geometric shape parameter N

vector of independent input variables Pb

vector of CFD output functions Q

vector of conventional optimization constraints q

number of standard deviations qt
Mach number at nozzle inlet R

vector of Mach number at each grid point V
Vt
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free-stream Mach number

target inlet Mach number

sample size

normalized nozzle static back (outlet) pressure
vector of flow-field variables (state variables)

mass flux through nozzle

target mass flux through nozzle

vector of state equation residuals
nozzle volume

target nozzle volume used for optimization
normalized axial position within nozzle
standard deviation

variance

superscript:

mean value
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Introduction

Gradient-based optimization of complex

aerodynamic configurations and their components,
utilizing high-fidclity Computational Fluid Dynamics

(CFD) tools, continues as a very active area of research

(see, for example, Ref. I, 2, and 3). In most of the

CFD-based aerodynamic optimization and design

studies to date, the input data and parameters have been

assumed precisely known; we refer to this as

deterministic or conventional optimization. When

statistical uncertainties exist in the input data or

parameters, however, these uncertainties affect the

design and therefore must be accounted for in the

optimization. Such optimizations under uncertainty

have been studied and used in structural design

disciplines (see, for example, Ref. 4, 5, 6, 7 and 8); we

refer to these as non-deterministic or robust design

optimization procedures.

Sensitivity derivatives (SD) of CFD code output,

with respect to code input and parameters, contain
information which can be used to direct the

optimization search; that is, the objective and constraint

gradients are functions of the CFD SD. Such SD can

also be used to accurately approximate the CFD output
in a small region, such as that near the mean value of a

random variable. In Ref. 9, it is shown that a statistical

First Order Second Moment _OSM) method and

Automatic Differentiation (AD) can be used to

efficiently propagate input uncertainties through finite

element analyses to approximate output uncertainty.

This uncertainty propagation method is demonstrated
hcrein for CFD code.

An integrated strategy for mitigating the effect of

uncertainty in simulation-based design is presented in

Ref. 10; this strategy consists of uncertainty

quantification, uncertainty propagation, and robust

design tasks or modules. Two approaches are discussed

there for propagating uncertainty through sequential

analysis codes: an extreme condition approach and a

statistical approach. Both approaches can be efficiently

implemented using SD. For CFD code, thc former

approach is demonstrated in Ref. 11, whereas the latter

approach is demonstrated herein using second moment

approximations and SD. These uncertainty propagation

methods have been developed and are being
investigated as an alternative to propagation by direct

Monte Carlo simulation for potentially expensive CFD

analyses.

The present paper shows how the approximate

statistical second moment methods, FOSM and the

Second Order Second Moment (SOSM) counterpart,

can be used in conjunction with SD to propagate input

data uncertainties through CFD code to estimate output

uncertainties. The FOSM approximation is then used to

perform sample robust optimizations. For

demonstration purposes, we assume that the input

uncertainty quantification is given by independent

normally-distributed random variables, and we

demonstrate the strategy of Ref. 10 as applied to a CFD

code module. This strategy is also applicable to

correlated and/or non-normally distributed variables;

however, the analysis and resulting equations become

more complex.

The gradient-based robust optimization

demonstrated herein requires second-order SD from the

CFD code. A companion paper, Ref. 12, presents,

discusses, and demonstrates the efficient calculation of

second-order SD from CFD code using a method

proposed, but not demonstrated, in Ref 13. This

method, uscd herein, incorporates FO SD obtained by
both forward-mode and reverse-mode differentiation in

a non-iterative scheme to obtain SO SD.

To date, the only other demonstration or application

of gradient-based, robust optimization involving

advanced or high-fidelity (nonlinear) CFD code that we

have found was just recently presented in Ref. 14 and

15. Thc analytical statistical approximation of their

objective function for robust optimization also required

second-order SD. However, these studies employed a

direct numerical random sampling technique to

compute expected values at each optimization step in

order to avoid the second-order SD. An example of

linear aerodynamics involved in multidisciplinary

performance optimization subject to uncertainty is
found in Ref. 16.

Two other aspects need to be pointed out in regard

to the robust optimization demonstrations for CFD code

modules prescntcd herein and also in Ref. 14 and 15.

First, the sources of uncertainty considered were only

those due to code input parameters involving geometry
and/or flow conditions; i.e., due to sources external to

the CFD code simulation. Other computational

simulation uncertainties, such as those due to physical,

mathematical and numerical modeling approximations

(see Ref. 17 and 18) - esscntially internal model error

and uncertainty sources, were not considered. That is,

the discrete CFD code analysis results were taken to be

deterministically "certain" herein. Ultimately, all of

these modeling sources of error and uncertainty must bc

assessed and considered. Sensitivity derivatives can
also aid in this assessment (Ref. 19) since the adequacy

of an internal model's (i.e., algorithm,_urbulcncc, etc.)

prediction capability generally depends, to some extent,

on the modeling parameter values specified as input.
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Second,asdiscussedinRef.15,uncertainty
classificationwithrespecttoanevent'simpact(from
performancelosstocatastrophic)andfrequency(from
everydayfluctuationtoextremelyrare)setstheproblem
formulationandsolutionprocedure.Structural
reliabilitytechniquestypicallydealwithrisk
assessmentofinfrequentbutcatastrophicfailuremodes,
identifyingthemostprobablepoint(MPP)offailure
anditssafetyindex.Here,weareaddressingthe
assessmentofeverydayoperationalfluctuationson
performanceloss,notcatastrophe.Consequently,we
aremostconcernedwithaeroperformancebehavior
duetoprobablefluctuations,i.e.,nearthemeanof
probabilitydensityfunctions(pdf).Structural
reliabilityassessmentismostconcernedwith
improbablecatastrophicevents,i.e.,probabilityinthe
tailsofthepdf.Simultaneousconsiderationofboth
typesofuncertaintyisdiscussedinRef.16.

InRef.10anintegratedmethodologyfordcaling
withuncertaintyinasimulation-baseddesignis
proposedanddemonstratedforalinkagemechanism
design.TheintegratedstrategyofRef.10formitigating
theeffectofuncertaintyincludes(a)uncertainty
quantification,(b)uncertaintypropagation,and(c)
robustdesign.Thepresentstudyutilizesthestrategy
proposedinRef.10,butdiffersinregardtouncertainty
propagationandapplication.Here,weareconsidering
theinfluenceofuncertaintyinCFDcodeinput;thatis,
theeffectofuncertaintyininputgeometryon
aerodynamicshape-designoptimizationandtheeffect
ofuncertaintyinflowconditionsondesignforflow
control.

(FOSMaridSOSM)wheretherequiredSDareobtained
byhandorbyAD(seeRef.9and20).Thefirststepin
bothFOandSOanalysesistoapproximatetheCFD
systemoutputsolutionsof interestinTaylorseries
form.Theseapproximationsareformedtoestimatethe
outputvalueforsmalldeviationsoftheinput.

Giveninputrandomvariablesb={bl.....b,} with
meanb={hi.....b, } andstandarddeviations,
ab={_b,.....ab,, }, theCFDoutputfunction,F,first-
andsecond-orderTaylorseriesapproximationsare
givenby

FO:
t/

F(b)=F(b)+£_F(b i -bi) (I)
i=1 rib,

SO:

-- " 3F

F(b) = F(b) + i:l£_i (bi -- bi) -k

(2)

where both first and second derivatives are evaluated at

the mean values, b.

One then obtains expected values for the mean (firsl

moment) and variance (second moment) of the output

function, F, which depend on the SD and input
variances, _h 2. (Recall the variance is equivalent to the

square of the standard deviation.) The mean of the
output function, F, and standard deviation %-, are

approximated as

Integrated Statistical Approach
FO:

Our implementation of the three aspects of the

integrated strategy of Ref. 10 are as follows:

Uncertainty Quantification

In this study, we consider the influence of

uncertainty in CFD input parameterization variables.

We have assumed that these input variables are

statistically independent, random, and normally

distributed about a mean value. This assumption not

only simplifies the resulting algebra and equations, but

also serves to quantify input uncertainties.

Furthermore, it is not an unreasonable assumption for

input geometric variables subject to random
manufacturing errors nor for input flow conditions

subject to random fluctuations.

Uncertainty Prop..agation

Uncertainty propagation is accomplished by

approximate statistical second moment methods

= F(b)

=+(aF f
(3)

SO:

_:F{g)+±'_ _ _2F
2! j--1 =

(_F2 i=l _ b, = (Ib

(4)

where both first and second derivatives are evaluated at

the mean values, b. Note in Eq. (4) that the second-

order mean output, F, is not at the mean values of

input b, i.e., F cF(b).
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Equations (3) represent a FO method and Eq. (4) a

SO method for examining uncertainty propagation. The

methods arc straightforward with the difficulty largely

lying in computation of the SD. The very efficient and
effective method used here to obtain such derivatives is

presented in a companion paper, Ref. 12.

Robust Design
Conventional optimization for an objective function,

Obj, that is a function of the CFD output, F, state

variables, Q, and input variables, b, is expressed in Eq.

(5). Herein, the CFD state equation residuals, R, are

represented as an equality constraint, and other system

constraints, g, are represented as inequality constraints.

The input variables, b, are precisely known, and all
functions of b are thercforc deterministic.

Therefore, a gradient-based optimization will then

require second-order SD to compute the objective and

constraint gradients. Note that for the SOSM

approximation, third-order SD would bc required for

these gradicnts.
The calculation of second-order SD for CFD code,

such as those required for SOSM and robust

optimization with FOSM, was demonstrated in Ref. 13;
the efficient calculation used herein is demonstrated

and discussed in a companion paper, Ref. 12. Both

hand differentiation and AD via the ADIFOR tool (Ref.

21, 22 and 23) were used. Both conventional and

robust optimizations were performed using the

Sequential Quadratic Programming (SQP) method

option in the Design Optimization Tools, DOT (Ref.

24).

min Obj, Obj = Obj(F,Q,b)

subject to

R(Q,b) = 0

g(F,Q,b) _<0

(5)

For robust design, the conventional optimization,

Eq. (5), must be treated in a probabilistic manner.

Given uncertainty in the input variables, b, all functions

in Eq. (5) are no longer deterministic. The dcsi...gn
variables are now the mean values, b = {b I..... b, },

where all elements of b" arc assumed statistically

independent and normally distributed with standard

deviations ¢_b.The state equation residual equality

constraint, R, is deemed to be satisfied at the expected
values of Q and b, that is the mean values Q and b for

the FO approximation. The ob.iective function is cast in
terms of expected values and becomes a function of F

and c_-. The other constraints are cast into a

probabilistic statement: the probability that the
constraints are satisfied is greater than or equal to a

desired or specified probability, Pk. This probability

statement is transformcd (sec Ref. 10) into a constraint

involving mean values and standard deviations under

the assumption that variables involved are normally

distributed. The robust optimization can be expressed

as

min Obj,
subject to

Obi = Obj(F ,¢_,Q, b )

R(Q,b)=0

g (_, _, _) + k_ _<o,
(6)

where k is the number of standard deviations, og, that
the constraint g must be displaced in order to achieve

the desired or specified probability, Pk. For the FOSM

approximation, standard deviations (_F and _g are of thc

form given in Eq. (3) involving first-order SD.

Application to Quasi 1-D Euler CFD

A very simple example has been chosen to
demonstrate the propagation of input uncertainty

through CFD codc and its effect on optimization. Two

separate applications are presented; the first involving

propagation of geometric uncertainties, the second

involving propagation of flow parameter uncertainties.

Both uncertainty analyses are performed with quasi

one-dimensional Euler equations and boundary

conditions describing subsonic flow through a variable
area nozzle. The nozzle inlet is located at x = 0 with

area A(x = 0) = 1; the nozzle outlet is at x = 1. The area

distribution is given by

A(x) = 1 - ax + bx 2 .

The w)lume, V, tx:eupied by the nozzle, is the

integration of A(x) over the length x = 0 to x = I
a b

V=I---+--,
2 3

where a and b are the input geometric parameters.

Three flow parameters are specified as input

boundary conditions: the stagnation enthalpy, inlet

entropy, and outlet static (back) pressure. The quasi

i-D Euler equation set is symbolically written as the

state equation in Eq. (5); its residual, R is driven to

(machine) zero for a solution.

For supersonic flow through a variable area nozzlc,

shock waves generally appear and the flow solution

(objective, constraint, etc.) becomes noisy or non-

smooth (see Rcf. 25 and the references cited therein).

Care must be exercised with respect to obtaining and

using the SD needed for gradient-based optimization

(Ref. 25 and 26). Therefore, we chose to bypass issues

related to this supersonic flow non-smoothness in these
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initialdemonstrationsofthepresentapproachfor
uncertaintypropagationandrobustdesignforCFD
codemodules.

Geometric Uncertainty ProPagation

For the discussion of geometric uncertainty

propagation, geometric shape parameters a and b will

represent the statistically independent random input

variables, b. The Mach number distribution through the

nozzle, M, is viewed here as a component of the state

variable. Q; its value at the inlet, M, is the CFD output,

F. Applying the approach previously outlined (recall

Eq. (3) and (4)) yields the following first- and second-

order approximations of the output function, M.

Input random variables: b={a,b}

CFD output function: F={M]

SO:

2M

I 1' 212"M2=t-g ' + "-g"b +0.50---g-_ +

o32M 2 2

(10)

B

Predictions of M(a,b), M, and CM for FO (Eq. (7)

and (9)) and SO (Eq.(8) and (10)) are compared with

CFD solutions and Monte Carlo analyses based on CFD

solutions, as given and discussed in the results section.

Robust Shape Optimiz_atj_on

Applying the conventional optimization previously
described yields

FO Taylor series:

M(a,b) = M(_,b) +OM(a -_) + _M (b -b)
da db

SO Taylor series:

+3M b
M(a.b)=M(_,b)+_aM(a-g) --_-(-b)+

(7)

-- [ 32M )32M (a -_)(b- b)+0.5( 3-_. (a __)2 + ('8)+ _aa--_ , -

+0.5 (b-b) 2

m

The mean, M, and standard deviation ¢h4 of the

output function are expressed as

FO:

= M(5,b)

 =(3M%12(3Mr]2oM-;x j+ x.
(9)

min Obj, Obj = Ob.ifM,a,b)

subject to
R(M,a,b) = 0

V(a,b) < 0,

(11)

where the system constraint, V, is a constraint on the
nozzle volume anddepends only on a and b; and our

objective does not explicitly depend on M.

Applying the robust optimization previously

described yields

rain Obj, Obj = Obj(M,oM,_ ,b)

subject to

R(M',g,b) = 0 (12)

V( 5, b )+ k_v < O,

where

r_v2 = ['_a ' [ -fib-- _ (13)

With a and b subject to statistical uncertainties

(which may be due to measurement, manufacturing,

etc.), V becomes uncertain. Since V is linearly

dependent on a and b, it is also normally distributed.

Therefore, its standard deviation, O'v, is given exactly

by Eq. (13).

To demonstrate the optimizations, a simple target-

matching problem is selected; a unique answer is

obtained when an equality volume constraint is

enforced. The CFD code is run for given a and b; the

resulting M(a,b) and corresponding V(a,b) are taken as

5
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thetargetvaluesMtandVt,respectively.Forthis
conventionaloptimization,theobjectivefunctionand
constraintfunctionforVofEq.(11)become

Obj(M,a,b)=[M(a,b)- Mr]2
V(a,b)-Vt=0
enforcedas
V(a,b)- Vt < 0 and Vt - V(a,b) _<0

for the convenience of the optimizer.

(14)

For robust optimization using the FOSM

approximation, the corresponding objective and

constraints on V of Eq. (12) become

obj (_,oM,_ ,g) = [_ (5 ,g)- Mt] 2 + OM2

V( 5, g )-Vt + ko'v =0

similarly enforced as

V(5, g ) - Vt + ko'v < 0

and Vt - V(_, b ) - kov -<0.

(15)

Note that for _,_= 6b = 0 in Eq. (15), the

conventional optimization is obtained. Also, in the

probabilistic statement of the constraint on V, it is

assumed that the desired volume is less than or equal to
Vt.

Flow Parameter Uncertainty Propagation

A second example of uncertainty in CFD involves

fluctuations in input flow parameters. For the

discussion of flow parameter uncertainty propagation,
the free-stream Mach number, Minf, and the nozzle

static back pressure, Pb, will be taken as statistically

independent random variables. Specifying the free-

stream Mach number sets the stagnation enthalpy. The

Mach number distribution through the nozzle, M, is

again viewed as a component of the state variable, Q;
its value at the inlet, M, is the CFD output, F.

Applying the approach previously outlined yields

equations which are similar to Eq. (7) through (10) but
with

Input random variables: b={Minf, Pb}

CFD output function: F=[M}.

w

Again, predictions of M, M, and OM for FO and SO

approximations are compared with CFD solutions and
Monte Carlo analyses based on CFD solutions, as given
and discussed in the next section.

Robust Design for Flow Control
The conventional optimization is expressed as

min Obj Obj = Obj(M,Minf, Pb)

subject to
R(M,Minf, Pb) = 0

q(Minf, Pb) _<0,

(16)

where q is a constraint on the mass flux through the
nozzle.

The robust optimization is expressed as

rain Obj, Obj = Obj( M ,OM, Minf, Pb )

subject to

R( M, Minf, Pb ) = 0

q(Min f, Pb )+ k_q< 0.

(17)

For the free stream Mach number, Minf, and the

nozzle back pressure, Pb, subject to statistical

uncertainties, the mass flux, q, becomes uncertain.

Since q is dependent on Minf and Pb, its standard

deviation, (rq, may be approximated by

2 . (]8)

Since q is not a linear function of Minf and Pb, Eq. (18)

is not exact (unlike the previous example where _v was

exactly known).

To demonstrate the optimizations, a simple target-

matching problem is again chosen. The CFD code is

run for given Minf and Pb; the resulting M and

corresponding q are taken as the target values Mt and

qt, respectively. For this conventional optimization, the

objective function and constraint functions of Eq. (16)
are

Obj(M,Minf, Pb) = [M(Minf, Pb) - Mr] 2

q(Minf, Pb) - qt = 0
enforced as

q(Minf, Pb) - qt < 0 and qt - q(Minf, Pb) < 0.

(19)

For robust optimization using the FOSM
approximation, the corresponding objective and

constraint on q of Eq. (17) can be shown as

Obj = Obj(M,CrM, Minf, Pb )

= [ M ( Minf, Pb )- Mt] 2 + 6M2

q(Minf, Pb )-qt +koq =0
enforced as

q(Minf, Pb )-qt +kclq- < 0

and qt-q(Minf, Pb )-ko. -<O.

(2O)

Again note that for gM_,f = Opb = 0 in Eq. (20), the

conventional optimization is obtained. Also, in the

6
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probabilisticstatementoftheconstraintonq,it is
assumedthatthedesiredmassfluxislessthanorequal
toqt.

Sample Results & Discussion

Presentation and discussion of results for the sample

quasi I-D Euler CFD problems are divided into four

topics: function approximations, uncertainty

propagation, pdf approximations, and robust

optimization. For the first three topics, the

approximations are assessed by comparison with direct
CFD simulations.

Function Approximations

It is important to assess the Taylor series output

function approximations with direct nonlinear CFD

code simulations prior to presenting uncertainty

propagation. If the CFD output function, M, is quasi-

linear with respect to the input variables of interest, one

can expect first-order approximations to be reasonably

good; that is, the FO moments given by Eq. (3) should

match well with the moments produced by a Monte

Carlo simulation. For a more nonlinear system, one

naturally expects better accuracy with second order

approximations; that is, uncertainty analyses which

include SO terms should yield results which better

predict the statistical moments produced by the Monte
Carlo simulation.

Figures I-4 show that for F=M(a,b), M behaves as a

quasi-linear function in the neighborhood of (_, b ),

whereas for F=M(Minf, Pb), M is more nonlinear in the

neighborhood of (Minf, Pb ). In these figures,

approximations of the CFD output functions, M(a,b)

and M(Minf, Pb), using the first- (FO) and second-order

(SO) Taylor series (as given in Eq. (7) and (8) for

M(a,b)), are compared to direct solution of the Euler

CFD. In each example, two traces were considered

through the design space. Trace I varied the first input
variable, while the second remained fixed at its mean

value, and vice versa for trace 2. The required first-
and second-order SD needed for construction of the FO

and SO approximations were obtained by hand

differentiation and AD as discussed and presented in
Rcf. 12.

Nonlinear behavior of the CFD result is reasonably

well approximated by the SO result in all plots;
however, there does appear to be an inflection point in
thc CFD results given in Fig. 3. Note that the linear FO

result is a good approximation in the geometric
example; the flow parameter example is more

nonlinear. At larger deviations from the mean, a linear

approximation for M(Minf, Pb) loses accuracy.

1,4

1.2

M 1

M

0.8

0.6

-0.3

• " " • CFD

- t -----so

-0.15 0 0.15

a-_

0.3

Fig. I. Comparison of Function Approximations vs.

CFD Solution, Input Variable b = b.

1.4

1.2

M

0.8

• CFD

...... FO

_SO
t

0.6 _ _ ....

-0.6 -0.3 0 0.3 0.6

b--_

Fig. 2. Comparison of Function Approximations vs.

CFD Solution, Input Variable a = _.
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1.1

1.05

M

0.95

0.9

-0.70 -035 0.00 035

Minf - Minf

Fig. 3. Comparison of Function Approximations vs.

CFD Solution, Input Variable Pb = Pb.

0.70

1.4

1.2 l

I

0.8

0.6

-0.30

W

t,

. * CFD _-
/

..... /
/

-0.15 0.00 0.15

Pb-Pb

0.30

Fig. 4. Comparison of Function Approximations vs.

CFD Solution, Input Variable Minf = Minf.

Uncertainty Propagation

Approximation of the statistical first and second

moments is done using equations Eq. (9) and (10)

(geometric example), and corresponding equations for

the flow parameter example. Again, both first- and

second-order SD are required and the prediction is

straightforward, given these derivatives. An

independent verification of these approximate mean and

standard deviation values is obtained here using direct

Monte Carlo simulation with the quasi [-D Euler CFD

c(_le and standard statistical analyses of these Monte

Carlo results. The standard statistical analyses used

were from MicroSoft ® Excel 2000 and the random

number generator MZRAN used was from Ref. 27.

Tables I and 2 give results for the mean (first moment)

and Tables 3 and 4 give results for the standard

deviation (second moment) value comparisons. The

input deviations (Oa and (Jb) or (_.umr and Opb), are taken

to be equal and given in the second column of each

table. The third column in each table gives the result

from the Monte Carlo simulation, where the sample

size (N) used was 3,000. The Monte Carlo error in its

predicted mean is _M/_", which is given in the fourth

column of Tables I and 2, The FO and SO approximate

predictions are given in the last two columns of each

table as percent difference from the Monte Carlo

results•

Table 1. Percent Difference from Monte Carlo (MC)

for FO and SO Predictions of M (5, b)

Input o M % Error _ diff w/MC % diff w/MC

Case Ga=GI,

I 0.01

2 O.02

3 0.04

4 0.06

5 0.08

MC

0.4041

0.4040

0.4054

0.4055

0.4096

MC

0.0187

0.0379

0.0756

0.1142

0.1557

FO Predict SO Predict

-0.0105 0.0656

0.0716 0.1531

-0.2867 0.0383

-0.3012 0.4301

-1.3078 -0.0209

Table 2. Percent Difference from MC for FO and SO

Predictions of M (Minf, Pb)

Input _ M % Error

Case o_li._On.,, MC MC

1 0.01 0.3933 0.0056

2 0.02 0.3932 0.0114

3 0.04 0.3898 0.0229

4 0.06 0.3889 0.0364

%diffw/MC %diffw/MC

FO Predict SO Predict

0.0037 -0.0269

0.0187 -0.1034

0.8917 0.3991

1.125I 0.0141

Table 3. Percent Difference from MC for FO and SO

Predictions of ¢J.. Geometric Example

Input o" (JM % diff w/MC % diff w/MC

Case

1

2

3

4

5

_.=Ob MC

0.01 0,0102

0.02 0.0207

0.04 0.0414

0.06 0.0625

0•08 O.O853

FO Predict SO Predict

-0.5773 -0.5708

-1.7026 -1.6769

-1.5794 -1.4766

-2.2590 -2.0296

-4.3987 -4.0001
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Table 4. Percent Difference form MC for FO and SO

Predictions of GM, Flow Parameter Exam )le

Input 0

Case O _,linr=O'l_

1 0.01

2 0.02

3 0.04

4 0.06

(_M

MC

0.0030

0.0062

0.0125

0.0199

%diff w/MC

FO Predic!

1.1815

-I.5093

-4.1604

-4.4070

%diffw/MC

SO Predict

1.2473

-1.2533

-3.1680

-2.1938

Note that mean and standard deviation

approximations for output M agree well with the Monte

Carlo results for small standard deviations in input
variables, (_,Gb) or (_Mi,f,_Pb), for both the FO and SO

predictions. At higher standard deviations, the SO

results tend to agree better with the Monte Carlo,

cspecially in the flow parameter example. Table 3

illustrates the expected behavior, i.e., SO

approximations are always better than FO and an

increase in the standard deviation of input parameters

monotonically increases the error associated with both

predictions. Also note that the Monte Carlo simulation

with a sample size of 3000 limits accuracy of the Monte

Carlo results. This is apparent in the raggedness of the

pdfs shown in the following section.

Probability Density Function Approximations
Given a mean and standard deviation of the CFD

output function (from either a Monte Carlo simulation

or an FO or SO prediction) and assuming a normal

distribution, one may then construct a pdf to

approximate the behavior of the non-deterministic

output function. This approximation is compared to the

pdf histogram generated from a Monte Carlo simulation

in Figs. 5, 6, and 7. The bars depict the Monte Carlo
histogram, and the solid curve is a normal distribution
at the Monte Carlo mean value and Monte Carlo

standard deviation as given in the previous tables. The

Monte Carlo simulation size of 3000 is certainly not

sufficient to obtain a smooth pdf. We note that both the

FO and SO normal distribulions are indistinguishable
from this normal Monte Carlo curve at this scale. It is

apparent that for either the quasi-linear functional

dependence on a and b (Fig. 5), or for small input

standard deviations of the flow parameters (Fig. 6), the
statistical approximations are good for a significant

region about the mean but tend to break down in

predicting the tails of the distribution. This is

significant, for if one is primarily interested in reliable

failure predictions, as for structural design, this

prediction may not be good enough. It is felt, however,

that in aerodynamic performance optimization using
CFD, where robustness about the mean is desired, these

approximations may be good enough.

0.06
(input stdvs--O.08output stdv=O.08530)

0.05

0.04

0.03

0.02

0.01

0

• ,1 MC Histogram

Mach Inlet

Fig. 5. Probability Density Function for M(a,b) for

o.=_ =0.08.

0.08

(input stdvs=O.02output stdv--O.012276)

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0

Fig. 6.

1 MCHistogram

•----Norr.al___a!M_C

Mach Inlet

Probability Density Function for M(Minf, Pb)

for (_Minf:O'pb :0.02.

It is not surprising that a nonlinear CFD output

function behaves differently for randomness in different

input variables. For M(Minf, Pb) at higher input

standard deviations (or_i,f=ffvo =0.06), the pdf of the

output function is no longer normal. In Fig. 7 one can

secthc non-normal behavior of CFD output givcn

normally distributed input variables Minf and Pb.
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(input stdvs=0.06 output stdv=0.03795)

0.06

0.05 _ MC Histogram ] II I.

0.04

0.03

0.02

0.01

Mach Inlet

Fig. 7. Probability Density Function for M(Minf, Pb)

for oM,,I=o_ =0.06.

R_obust Optimizations

Optimization results were generated using the quasi

I-D Euler CFD code and the procedure given by Eq. (5)

and (6). As noted carlicr, conventional optimization is

obtained for or, = crb = 0 or for oMi,t = ¢_Pb= 0. For the

FOSM approximation, first-order SD are required to

obtain ¢_Mand Cry and o,_; therefore, second-order SD

will be required for their derivatives, which are used in

the optimization. The second-order SD were obtained

by the manner presented in Ref. 12, except for those

associated with Eq. (18) where the first-order SD were

finite differenced simply for convenience.

It is seen from Eq. (12) and (17) that the robust

optimization results should depend on the probabilistic

parameters (_,, or,) or ((_Minf,(_pb), and k. The desired

probability, Pk, is that from the normal cumulative

distribution function since _v and Oq here are assumed

to be normally distributed.

For each robust optimization example, two cases are

presented. For case I, Pk is fixed at k= I, i.e.,

P_=84.13%, and the effect of increasing the input

variable standard deviations is addressed. For case 2,

the standard deviations of the input variables are fixed

at 0.01 and P_ increases.

Robust Shape Optimization Results- In Table 5,

results for case 1 of the robust shape optimization are

displayed. For _=_ ranging from 0 to 0.08, optimal

values for the input variables _,_)i are listed. As

¢&=ob increases, so does Or. Accordingly, the mean

values, (E, b), which minimize the objective function

and satisfy the probabilistic constraint, becomc

increasingly displaced from the target volume, Vt. This

is shown in Fig. 8. Mean values ('if, b) change, keeping

the mean valuc, M_, b), of the probabilistic output

near the target value, Mr. The robust design points

track the dashed curve for M = Mt with some

displacement due to the Oi "_term of the objective, Eq.

(15). V (_,b) is displaccd from the solid curve V = Vt

by kc_v, as required by the probabilistic constraint. This

displacement can be viewed as the solution dependent

or "effective" safety factor.

Table 5. Robust Shape Optimization Results with

Increasin 3ut Parameter o for k= I

cr,,=o, _ b I Obj

0.00 0.6001 0.3001 0.0000
0.02 0.6685 0.3667 0.0004

0:04 0.'7338 0.4286 0.0016

.06 0.7948 0.4841 0.0037

0.08 0.8534 0.5358 0.0065

0.4043toooooIooooo
0.4036 I 0.0203 0.0120

0.4018 0.0406 0.0240

0.3984 0.0607 0.0360

0.3941 0.0804 0.0480

In Fig. 9 the changing area distribution of the robusl

optimization is illustrated. As the standard deviations

of design variables (-E,b) increase, the optimal non-

deterministic volume, V (_-, b), significantly decreases.
08

Constraint
o.7 Target, Vt

/ Objective
o.6 _ Target, Mt

•_ 05

04

/I _ /Increasing o,

_-"___ / robustO.3

/.2" _--a = O,
.._/ conventional

_," I I I
0_,5 06 07 01.8 0.9

e

Fig. 8. Optimization results in design space (a,b),

P_ fixed at PI.

conventional,o9

l %_ ...x<

,_. 1 \N "\._

0.7 i Increasing o, ""---_..-._'__--7;._--'

robust

0%,- o's 1
X

Fig. 9. Nozzle area distributions, Pk fixed at P_.
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The results for case 2 of the robust shape
optimization, where c, =Cb is fixed at 0.01, and Pk

increases from 50 percent to 99.99 percent (k=0 to 4)
are given in Table 6. Again mean values (5,b)change,

keeping the mean value, M(5, b), of the probabilistic

output near the target value, Mt. Since (_,--_b remains
small, the _3M2term of the objective remains small, and

the displacement of M from the dashed line depicting
Mt due to the _,12 term remains small as shown in

Fig.10. With an increase in Pk, V (-5,b) is displaced

from the solid curve V = Vt by k_3v, as required by the

probabilistic constraint. Accordingly, the mean values,
(5, b), which minimize the objective function and

satisfy the constraint, again become increasingly

displaced from those at the target volume, Vt. Note the

significant displacement of the solution from the target

volume when Pk is large, i.e., when one is attempting to

incorporate the tails of the pdf. In order to increase the

probability of constraint satisfaction from 97.77 percent
to 99.99 percent, one sees a significant change in (5, b)

for a mere gain of 2 percent in constraint satisfaction.

Table 6. Robust Shape Optimization Results with

lncreasin Pk for o=0.01

K Pk a I_ Obj -M om Ov

0 0.5000 0.5996 0.2995 0.000104 0.4041 0,0101 0,006

1 0.8413 0.6246 0.3189 0.000118 0.4004 0.0101 0.006

2 0.9772 0.6698 0.3687 0.000104 0.4041 0.0101 0.006

3 0.9986 0.7052 0.4037 0.000104 0,4042 0.0102 0.006

4 0.9999 0.7406 0.4388 0.000104 0.4043 0.0102 0.006

0.8

0.7

/

1

./ /]

j/
,11/

..f_/_ robust
= 0,

o=0.01
/ / i I i

0.6 0.7 0.8

Constraint
Target,Vt

TObjective
arget,Mt

/
0.6

,O0,5

0.4

0.3

I0_ 09
11

Fig. I0. Optimization results in design space (a,b),
g fixed at 0.01.

Robust Design fi_r Flow Control Results- Similar

results are seen in the flow parameter example. In

Table 7, the results for case 1 are displayed. For

_M+,r= ¢rpbranging from 0 to 0.08, optimal values for

the input variables (Minf, Pb)are listed. As _M+.f= ¢rpb

increases, so does Cq. Accordingly, the mean values,
(Minf, Pb), which minimize the objective function and

satisfy the constraint, become increasingly displaced

from the target mass flux, qt. This is shown in Fig. 11.

Mean values (M-inf, Pb) change, keeping the mean

value, M(Minf, Pb), of the probabilistic output near the

target value, Mt. The robust design points track the

dashed curve for M = Mt with displacement due to the

_M2 term of the objective, Eq. (17). The optimized

mass flux, q (Minf, Pb), is displaced from the solid

curve q = qt by k_3qas required by the probabilistic
constraint.

Table 7. Robust Design for Flow Control Results with
Increasin _ut Parameter _ for k= I

_'Mm =OPt "M'inf "Pb Obj M" _r,t _,_

0 0.3000 0.8000 0.0000 0.3933 0.0000 0.0000

0.02 0.2861 0.7883 0.0001 0.3974 0.0116 0.0058

0.04 0.2655 0.7801 0.0005 0.3985 0.0231 0.0112

0.06 0.2555 0.7653 0.0012 0.4050 0.0327 0.0163

0.08 0.2468 0.7498 0.0020 0.4118 0.0407 0.0209

0.85

Constraint

Target, qt _

a=O,

i 0.8 convell_sing o,_

a. Objective _ _ _ _ _ _ -- •

Target, Mt

0.75 • f Robust -
\

l I I I

0.11 0.2 0.25 0.3 0.35

Free-Stream Mach No. (Minf)

Fig. 11. Optimization results in design space
(Minf, Pb), Pk fixed at Pl.

The results for case 2 of the robust design for flow

control, where CM,,f =_Pb is fixed at 0.01, and Pk

increases from 50 percent to 99.99 percent, (k=0 to 4)

are given in Table 8. Again, mean values

(__Min__f,Pb)change, keeping the mean value,
M(Minf, Pb), of the probabilistic output near the target

value, Mc As in the preceding example, since

(_Minf=(Ypbremains small, the (3"M 2 term of the objective

remains small and the displacement due to the _m 2 term

remains small, as shown in Fig. 12. With an increase in

11
American Institute of Aeronautics and Astronautics



Pk,q(Min f, Pb) is displaced from the solid curve q = qt

by k_q, as required by the probabilistic constraint.

Accordingly, the mean values, (Minf, Pb), which

minimize the objective function and satisfy the
constraint again become increasingly displaced from

the target mass flux, qt. Again, note the significant

displacement from the target mass flux incurred in the

higher probability optimizations, i.e., when one is

attempting to incorporate the tails of the pdf.

Table 8. Robust Design for Flow Control Results with

Increasing Pk for _ = 0.01

0 0.5000 0.3000 0.8000 0.00003 0.3933 0.0060 0.0030

I 0.8413 0.2919 0.7953 0.00003 0.3945 0.005910.0029

_2 ()).¢)7720.2825 0.7916 0.00003 0.3949 0.0059]0.0029

13 0.9986 0.268810.78961 0.__0000310:393610.00601 0.0028
4 0.9999 0.259810.7867 / 0.00003/0393810.o06010.0028

0.85

Constraint

Target,qt _

_" k=O _'_o LO0.ol

0. Objective _ _ / _ Increasingk, \

i 0.75 Target,Mt Robust

, I I I I
0.15 0,2 0.25 0.3 0.35

Free-Stream Mach No, (Minf)

Fig. 12. Optimization results in design space
(Minf, Pb), ¢yfixed at 0.01.

Concluding Remarks and Challenges

The present results represent an implementation of

the approximate statistical moment method for
uncertainty propagation and robust optimization for a

quasi I-D Eulcr CFD code. Assuming statistically
independent, random, normally distributed input
variables, a first- and second-order statistical moment

matching procedure was performed to approximate the

uncertainty in the CFD output. Efficient calculation of
both first- and second-order sensitivity derivatives was

employed and the validity of the approximations was

assessed by comparison with statistical moments
generated through Monte Carlo simulations. The

uncertainties in the CFD input variables were
incorporated into a robust optimization procedure

where statistical moments involving first--order
sensitivity derivatives appeared in the objective

function and system constraints. Second-order
sensitivity derivatives were used in a gradient-based

robust optimization. The approximate methods used
throughout the analyses were found to be valid when

considering robustness about input parameter mean
values.

Collectively, these results demonstrate the
possibility for an approach to treat input parameter

uncertainty and its propagation in gradient-based design
optimization that is governed by complex CFD analysis
solutions. It has been demonstrated on a very simple

CFD code and problem; there are computational

resource issues to be addressed in application to
significant 2-D and 3-D CFD codes and problems.

Some of these are addressed in the companion paper,
Ref. 12. Work is presently in progress regarding

application and demonstration using 2-D Euler CFD
code.
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